

# A40 - Steel coils for laser cutting applications

These steels are particularly suitable for manufacturing complex parts or for improving productivity when parts are to be produced on a small scale.

### **Properties**

Steel coils for laser cutting applications (CLAS) are hot rolled coils produced in specific grades, developed for applications using computer-controlled thermal and mechanical cutting equipment (laser, plasma etc).

Two ranges are available: structural and high yield strength steels for cold forming.

- The structural steel range begins with S200 CLAS AM FCE grade, which combines the drawability of DD12 AM FCE (EN 10111:2008) and a narrow tolerance range for the mechanical properties. All the other grades are improved structural steels in compliance with EN 10025-2:2004.
- The range of high yield strength steels for cold forming comprises improved versions of Amstrong® 315MC, Amstrong® 355MC, Amstrong® 420MC and Amstrong® 500MC, as per EN 10149-2:2013.

All these grades are designed to:

- Give improved productivity, quality and consistency with laser cutting
- Meet the most stringent flatness requirements after cutting



## Advantages

Steel coils supplied for laser cutting are virtually free of internal stresses and can therefore be used to produce sheets with guaranteed flatness before, during and after cutting, provided that appropriate decoiling tools and procedures are used. Sheets produced on cutting-to-length lines certified by ArcelorMittal may have guaranteed flatness before, during and after cutting (see data sheet A42).

For thicknesses below 16 mm, steels for laser cutting offer significantly higher laser cutting speeds than those obtained with standard grades and/or conventional cutting processes (plasma, oxy-cutting).

These steels can be hot dip galvanised.

## **Applications**

These grades are particularly suitable for manufacturing complex parts or for improving productivity when parts are to be produced on a small scale.

Since 1 July 2013, the Construction Products Regulation (Regulation (EU) No. 305/2011 – CPR) has required that CE marking be affixed to all products delivered in accordance with a harmonised standard (e.g. EN 10025). This CE marking guarantees, for the uses defined in the standard, the properties described in the declaration of performance submitted by the manufacturer.

The S235 CLAS AM FCE, S275 CLAS AM FCE and S355 CLAS AM FCE steels in this data sheet comply with this Regulation.

## Surface quality

Laser cutting speed largely depends on surface homogeneity and reflectivity. To improve productivity for our clients, ArcelorMittal has developed several surface finishes compatible with laser cutting:

- Mill finish:
  - Surface appearance: only A (unexposed) is available
  - Surface cleanliness: on request, Amstrong® grades can be delivered with an improved surface finish on black hot rolled product. Contact our commercial teams for further information.
- Pickled:

ArcelorMittal's hydrochloric acid pickling process produces a clean, more favourable surface for laser cutting than that produced by sulphuric acid pickling.

- Surface appearance: A (unexposed) and B (exposed) are available
- Protection:
  - o Protective oil may be applied
  - Easyfilm® HPE is available. It offers more uniform dry surface protection than oil and favourably reduces
    the reflectivity of the steel. Moreover, since no oil is used, workplace floors are cleaner and safer.
     For more information, see data sheet A80.



## Weldability

Due to their low carbon equivalent value (see table of chemical properties), ArcelorMittal's steel coils for laser cutting applications offer excellent weldability.

## Brand correspondence

#### High yield strength steels for cold forming

|                             | EN 10025-2:2004 | EN 10149-2:2013 | EN 10111:2008 | Old brand names                              |
|-----------------------------|-----------------|-----------------|---------------|----------------------------------------------|
| Amstrong® 320MC CLAS AM FCE |                 | S315MC          |               |                                              |
| Amstrong® 360MC CLAS AM FCE |                 | \$355MC         |               | Sollaser® 380/Sidlaser® 380/Superlaser 355MC |
| Amstrong® 420MC CLAS AM FCE |                 | S420MC          |               | Sollaser® 440/Sidlaser® 420                  |
| Amstrong® 500MC CLAS AM FCE |                 | S500MC          |               |                                              |

#### Structural steels

|                  | EN 10025-2:2004 | EN 10149-2:2013 | EN 10111:2008 | Old brand names                             |
|------------------|-----------------|-----------------|---------------|---------------------------------------------|
| S200 CLAS AM FCE |                 |                 | DD12          | Sollaser® 220/Sidlaser® 220/Superlaser DD12 |
| S240 CLAS AM FCE | S235J0          |                 |               | Sollaser® 260/Sidlaser® 240/Superlaser 235  |
| S275 CLAS AM FCE | S275J0          |                 |               |                                             |
| S355 CLAS AM FCE | S355J0          |                 |               |                                             |

### **Dimensions**

#### Thickness tolerance

The consistent thickness and reduced internal stresses of these coils make it possible to operate laser cutting machines continuously by lowering the breakdown risk and the frequency of laser cutting head breakage. This allows the use of fully automated loading and discharging systems.

The following thickness tolerances (EN 10051:2010) are available: 3/4, 1/2 and 1/3 for both mill finish and pickled steels. Contact our commercial teams for stricter tolerances.

 $Amstrong^{@}\ grades\ are\ delivered\ with\ a\ thickness\ tolerance\ of\ 1/2\ EN\ if\ a\ tighter\ tolerance\ is\ not\ requested.$ 

#### Flatness tolerance

Since the degree of sheet flatness obtained mainly depends on the uncoiling and levelling process used during laser cutting, we cannot offer any guarantee for coil products supplied.

#### **Dimension tables**

The following tables show the dimensions available for ArcelorMittal's coils:

#### Mill finish

| Thickness (mm)        | Min<br>width | Amstrong® 320MC<br>CLAS AM FCE | Amstrong® 360MC<br>CLAS AM FCE | Amstrong® 420MC<br>CLAS AM FCE | Amstrong® 500MC<br>CLAS AM FCE | S200 CLAS<br>AM FCE | S240 CLAS<br>AM FCE | S275 CLAS<br>AM FCE | S355 CLAS<br>AM FCE |
|-----------------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------|---------------------|---------------------|---------------------|
| (11111)               | Width        | Max width                      | Max width                      | Max width                      | Max width                      | Max width           | Max width           | Max width           | Max width           |
| 2.00 ≤ th < 2.50      |              | 1400                           | 1400                           | 1400                           |                                | 1630                | 1630                | 1630                | 1440                |
| 2.50 ≤ th < 3.00      |              | 1590                           | 1500                           | 1500                           |                                | 2000                | 1850                | 1830                | 1540                |
| 3.00 ≤ th < 3.50      |              | 1700                           | 1650                           | 1650                           | -                              | 2000                | 2030                | 2030                | 1800                |
| 3.50 ≤ th < 4.00      |              | 1790                           | 1730                           | 1690                           |                                |                     |                     |                     |                     |
| 4.00 ≤ th < 4.50      |              | 1880                           | 1880                           | 1040                           |                                |                     |                     |                     | 2130                |
| 4.50 ≤ th < 5.00      | 700          | 2030                           | 2030                           | 1840                           | *                              |                     |                     |                     |                     |
| 5.00 ≤ th < 10.00     | 700          | 2130                           | 2130                           | 2130                           |                                |                     |                     |                     |                     |
| 10.00 ≤ th<br>< 11.00 |              | 2130                           | 2130                           | 2030                           |                                | 2130                | 2130                | 2130                | 2020                |
| 11.00 ≤ th < 13.00    |              |                                |                                | 2030                           |                                |                     |                     |                     | 2030                |
| 13.00 ≤ th<br>< 13.50 |              | 1930                           |                                | 1930                           | -                              |                     |                     |                     |                     |
| 13.50 ≤ th < 14.00    |              |                                | 1930                           |                                |                                |                     |                     |                     | 1930                |
| 14.00 ≤ th<br>< 15.00 |              | -                              |                                | -                              |                                |                     |                     |                     |                     |

| Thickness<br>(mm)     | Amstrong® 320M<br>Min CLAS AM FCE<br>width |           | Amstrong® 360MC Amstrong® 420M<br>CLAS AM FCE CLAS AM FCE |           | Amstrong® 500MC<br>CLAS AM FCE | S200 CLAS<br>AM FCE | S240 CLAS<br>AM FCE | S275 CLAS<br>AM FCE | S355 CLAS<br>AM FCE |
|-----------------------|--------------------------------------------|-----------|-----------------------------------------------------------|-----------|--------------------------------|---------------------|---------------------|---------------------|---------------------|
| (IIIII)               | WIGGI                                      | Max width | Max width                                                 | Max width | Max width                      | Max width           | Max width           | Max width           | Max width           |
| 15.00 ≤ th<br>< 15.50 | 700                                        | _         | 1930                                                      |           | _                              | 2130                | 2130                | _                   |                     |
| 15.50 ≤ th<br>< 16.00 | 700                                        | -         | 1930                                                      | -         | -                              | 2130                | 2130                | -                   | -                   |

<sup>\*</sup> Amstrong® 500MC CLAS AM FCE: only after prior agreement

#### Pickled coils

| Thickness<br>(mm)     | Min<br>width         | Amstrong® 320MC<br>CLAS AM FCE | Amstrong® 360MC<br>CLAS AM FCE | Amstrong® 420MC<br>CLAS AM FCE | Amstrong® 500MC<br>CLAS AM FCE | S200 CLAS<br>AM FCE | S240 CLAS AM FCE,<br>S275 CLAS AM FCE | S355 CLAS<br>AM FCE |
|-----------------------|----------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------|---------------------------------------|---------------------|
| (IIIII)               | WIGGI                | Max width                      | Max width                      | Max width                      | Max width                      | Max width           | Max width                             | Max width           |
| 2.00 ≤ th < 2.50      | 600                  | 1420                           | 1400                           | 1400                           |                                | 1630                | 1630                                  | 1440                |
| 2.50 ≤ th < 3.00      |                      | 1590                           | 1500                           | 1500                           | -                              | 2000                | 1850                                  | 1540                |
| 3.00 ≤ th < 4.00      |                      | 1700                           | 1600                           | 1550                           |                                |                     | 2000                                  | 1780                |
| 4.00 ≤ th < 5.00      |                      | 1880                           | 1880                           | 1830                           |                                | 2130                |                                       | 2130                |
| 5.00 ≤ th < 6.00      | 700                  | 2130                           | 2130                           | 2130                           | (1540)                         | 2130                | 2130                                  | 2130                |
| 6.00 ≤ th < 7.15      | 700                  | 2130                           | 2130                           |                                |                                |                     |                                       | 1550                |
| 7.15 ≤ th < 8.15      |                      |                                |                                | 1520                           |                                | 1550                | 1550                                  |                     |
| 8.15 ≤ th < 12.00     | 2.00 1520<br>00 ≤ th |                                | 1520                           | 1320                           | -                              | 1520                | 1520                                  | 1520                |
| 12.00 ≤ th<br>< 13.00 |                      |                                |                                |                                |                                | -                   | 1320                                  |                     |

<sup>\*</sup> Amstrong® 500MC CLAS AM FCE: only after prior agreement

## Mechanical properties

#### High yield strength steels for cold forming

|                              | Direction | Thickness (mm) | R <sub>e</sub> (MPa) | R <sub>m</sub> (MPa) | A <sub>80</sub> (%) | A 5.65√S <sub>o</sub> (%) | Bending ratio (th) | KV -20°C <b>(J)</b> |  |
|------------------------------|-----------|----------------|----------------------|----------------------|---------------------|---------------------------|--------------------|---------------------|--|
|                              |           | 2 - 3          |                      |                      | ≥ 22                |                           |                    |                     |  |
|                              | L         | 3 - 6          | 320 - 420            | 420 - 500            |                     | ≥ 27                      | -                  | -                   |  |
| Amstrong® 320MC CLAS AM FCE  |           | 6 - 14         |                      |                      | -                   |                           |                    | ≥ 40                |  |
|                              | Т         | 2 - 3          | 345 - 450            | 435 - 540            | ≥ 21                | ≥ 26                      | ≥ 0                | _                   |  |
|                              | '         | 3 - 14         | 343 - 430            | 433 - 340            | -                   | 2 20                      | 20                 | _                   |  |
|                              |           | 2 - 3          |                      |                      | ≥ 21                | -                         |                    | _                   |  |
|                              | L         | 3 - 6          | 360 - 440            | 450 - 530            | _                   | ≥ 26                      | -                  | -                   |  |
| Amstrong® 360MC CLAS AM FCE  |           | 6 - 16         |                      |                      |                     | 2 20                      |                    | ≥ 40                |  |
|                              | Т         | 2 - 3          | 380 - 460            | 460 - 540            | ≥ 20                | -                         | ≥ 0                | _                   |  |
|                              | '         | 3 - 16         | 360 - 400            | 400 - 340            | -                   | ≥ 25                      | 20                 | -                   |  |
|                              |           | 2 - 3          | 420 - 500            |                      | ≥ 18                | -                         |                    | _                   |  |
|                              | L         | 3 - 6          |                      | 490 - 590            | _                   | ≥ 23                      | -                  |                     |  |
| Amstrong® 420MC CLAS AM FCE  |           | 6 - 14         |                      |                      |                     | 2 23                      |                    | ≥ 40                |  |
|                              | Т         | 2 - 3          | 440 - 520            | 500 - 600            | ≥ 17                | -                         | ≥ 0.5              | _                   |  |
|                              | ·         | 3 - 14         | 440 320              | 300 000              | -                   | ≥ 22                      | 2 0.5              | -                   |  |
|                              |           | < 2            |                      |                      | ≥ 15                | _                         |                    |                     |  |
|                              | L         | 2 - 3          | 500 - <b>600</b>     | 570 - 700            | ≥ 16                |                           | _                  | -                   |  |
|                              | _         | 3 - 6          | 300 000              | 370 700              | _                   | ≥ 19                      |                    |                     |  |
| Amstrong® 500MC CLAS AM FCE  |           | 6 - 10         |                      |                      |                     | 2.13                      |                    | ≥ 40                |  |
| Anistrolig Soome CLAS AM FCE |           | < 2            |                      |                      | ≥ 14                | _                         |                    |                     |  |
|                              | Т         | 2 - 3          | 530 - 630            | 570 - 700            | ≥ 15                |                           | ≥ 0.6              | -                   |  |
|                              | '         | 3 - 6          |                      | 5/0 - /00            | _                   | ≥ 18                      |                    |                     |  |
|                              |           | 6 - 10         |                      |                      |                     | - 10                      | ≥ 1                |                     |  |

Bending ratio is as defined in EN 10149-2:2013: "Bending at 180° minimum mandrel diameter".

#### Structural steels

|                    | Direction | Thickness (mm) | R <sub>e</sub> (MPa) | R <sub>m</sub> (MPa) | A <sub>80</sub> (%) | A 5.65√S <sub>o</sub> (%) | Bending ratio (th) | K∧ 0°C <b>(1)</b> |
|--------------------|-----------|----------------|----------------------|----------------------|---------------------|---------------------------|--------------------|-------------------|
| S200 CLAS AM FCE   | Т         | 2 - 3          | 200 - 310            | 320 - 410            | ≥ 27                | -                         |                    |                   |
| 5200 CLAS AM FCE   |           | 3 - 16         | 200 - 300            | 320 - 400            | -                   | ≥ 32                      | -                  | -                 |
|                    | L         | 6 - 16         | -                    | -                    | -                   | -                         | -                  | ≥ 27              |
| S240 CLAS AM FCE   | Т         | 2 - 3          | 240 - 320            | 360 - 440            | ≥ 22                | -                         | _                  |                   |
|                    | '         | 3 - 16         | -                    | -                    | -                   | ≥ 28                      | -                  | -                 |
|                    | L         | 6 - 16         | -                    | -                    | -                   | -                         | -                  | ≥ 27              |
| S275 CLAS AM FCE   |           | 2 - 2.5        |                      | 430 - 580            | < 16                |                           |                    |                   |
| 3273 CLAS AINI FCE | Т         | 2.5 - 3        | ≥ 275                | 430 - 360            | < 17                | -                         | -                  | -                 |
|                    |           | 3 - 16         |                      | 410 - 560            | -                   | < 21                      |                    |                   |
|                    | L         | 6 - 16         | -                    | -                    | -                   | -                         | -                  | ≥ 27              |
| S355 CLAS AM FCE   |           | 2 - 2.5        |                      | 510 - 610            | ≥ 15                |                           |                    |                   |
| 3333 CLAS AM FCE   | Т         | 2.5 - 3        | ≥ 355                | 310-010              | ≥ 16                | _                         | ≥ 1                | -                 |
|                    |           | 3 - 16         |                      | 490 - 590            | -                   | ≥ 20                      |                    |                   |

Bending ratio: the values of the bending radius are applicable for bend angles  $\leq 90^{\circ}$ , as proposed in EN 10025-2:2004.

## Chemical composition

#### High yield strength steels for cold forming

|                             | C (%)   | Mn (%) | P (%)   | S (%)   | Si (%) | Al (%)  | Cu (%) | Cr (%) | Ni (%) | Nb (%)  | C <sub>eq</sub> (%) | Galvanisation |
|-----------------------------|---------|--------|---------|---------|--------|---------|--------|--------|--------|---------|---------------------|---------------|
| Amstrong® 320MC CLAS AM FCE | ≤ 0.100 | ≤ 1.30 | ≤ 0.025 | ≤ 0.012 | ≤ 0.03 | ≥ 0.020 | ≤ 0.25 | ≤ 0.15 | ≤ 0.25 | ≤ 0.040 | ≤ 0.36              | Class 1       |
| Amstrong® 360MC CLAS AM FCE | ≤ 0.100 | ≤ 1.40 | ≤ 0.020 | ≤ 0.012 | ≤ 0.03 | ≥ 0.020 | ≤ 0.25 | ≤ 0.15 | ≤ 0.25 | ≤ 0.065 | ≤ 0.36              | Class 1       |
| Amstrong® 420MC CLAS AM FCE | ≤ 0.110 | ≤ 1.50 | ≤ 0.020 | ≤ 0.012 | ≤ 0.03 | ≥ 0.020 | ≤ 0.25 | ≤ 0.15 | ≤ 0.25 | ≤ 0.065 | ≤ 0.38              | Class 1       |
| Amstrong® 500MC CLAS AM FCE | ≤ 0.120 | ≤ 1.70 | ≤ 0.020 | ≤ 0.012 | ≤ 0.03 | ≥ 0.020 | ≤ 0.25 | ≤ 0.15 | ≤ 0.25 | ≤ 0.090 | ≤ 0.42              | Class 1       |

#### Structural steels

|                  | C (%)   | Mn (%) | P (%)   | S (%)   | Si (%) | Al (%)  | Cu (%) | Cr (%) | Ni (%) | Nb (%)  | C <sub>eq</sub> (%) | Galvanisation |
|------------------|---------|--------|---------|---------|--------|---------|--------|--------|--------|---------|---------------------|---------------|
| S200 CLAS AM FCE | ≤ 0.080 | ≤ 0.45 | ≤ 0.025 | ≤ 0.025 | ≤ 0.03 | ≥ 0.020 | -      | -      | -      | -       | ≤ 0.16              | Class 1       |
| S240 CLAS AM FCE | ≤ 0.170 | ≤ 0.80 | ≤ 0.025 | ≤ 0.025 | ≤ 0.03 | ≥ 0.020 | ≤ 0.25 | -      | -      | -       | ≤ 0.35              | Class 1       |
| S275 CLAS AM FCE | ≤ 0.180 | ≤ 1.30 | ≤ 0.025 | ≤ 0.025 | ≤ 0.03 | ≥ 0.020 | ≤ 0.25 | ≤ 0.15 | ≤ 0.25 | -       | ≤ 0.40              | Class 1       |
| S355 CLAS AM FCE | ≤ 0.200 | ≤ 1.60 | ≤ 0.025 | ≤ 0.012 | ≤ 0.03 | ≥ 0.020 | ≤ 0.25 | ≤ 0.15 | ≤ 0.25 | ≤ 0.060 | ≤ 0.45              | Class 1       |

#### Any questions?

Ask them via our contact form on https://industry.arcelormittal.com/getintouch

All details provided in the ArcelorMittal Flat Carbon Europe S.A. catalogue are for information purposes only. ArcelorMittal Flat Carbon Europe S.A. reserves the right to change its product range at any time without prior notice.